Optimal Energy Decay Rate for Partially Damped Systems by Spectral Compensation

نویسندگان

  • Paola Loreti
  • Bopeng Rao
چکیده

We study the stability of weakly coupled and partially damped systems by means of Riesz basis approach in higher dimension spaces. We propose a weaker distributed damping that compensates the behaviour of the eigenvalues of the system, therefore gives the optimal polynomial energy decay rate for smooth initial data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decay of Solutions of the Wave Equation with Localized Nonlinear Damping and Trapped Rays

We prove some decay estimates of the energy of the wave equation governed by localized nonlinear dissipations in a bounded domain in which trapped rays may occur. The approach is based on a comparison with the linear damped wave equation and an interpolation argument. Our result extends to the nonlinear damped wave equation the well-known optimal logarithmic decay rate for the linear damped wav...

متن کامل

Energy decay for the damped wave equation under a pressure condition

We establish the presence of a spectral gap near the real axis for the damped wave equation on a manifold with negative curvature. This results holds under a dynamical condition expressed by the negativity of a topological pressure with respect to the geodesic flow. As an application, we show an exponential decay of the energy for all initial data sufficiently regular. This decay is governed by...

متن کامل

Energy Decay of Damped Systems

We present a new and simple bound for the exponential decay of second order systems using the spectral shift. This result is applied to finite matrices as well as to partial differential equations of Mathematical Physics. The type of the generated semigroup is shown to be bounded by the upper real part of the numerical range of the underlying quadratic operator pencil.

متن کامل

Energy decay for damped wave equations on partially rectangular domains

We consider the wave equation with a damping term on a partially rectangular planar domain, assuming that the damping is concentrated close to the non-rectangular part of the domain. Polynomial decay estimates for the energy of the solution are established.

متن کامل

Finding the Optimal Place of Sensors for a 3-D Damped Wave Equation by using Measure Approach

In this paper‎, ‎we model and solve the problem of optimal shaping and placing to put sensors for a 3-D wave equation with constant damping in a bounded open connected subset‎ ‎of 3-dimensional space‎. ‎The place of sensor is modeled by a subdomain‎ ‎of this region of a given measure‎. ‎By using an approach based on the embedding process‎, ‎first‎, ‎the system is formulated in variational form;...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2006